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Abstract

The paper considers a new variant of the discontinuous particle method. The main fea-
ture of the new variant is minimal smearing of discontinuities, due to the new criterion of re-
arrangement of particles. In contrast to the previously used variant with the analysis of over-
laps of particles, which required an assumption about their shape, we use the key characteris-
tic of particles, namely, their mass. The assumption is made that in nonlinear elastic
transport not only the masses of the particles are conserved, but also the mass located be-
tween the centers of these particles. This requirement leads to the fact that a change of dis-
tance between particles in the process of their shear and conservation of mass in the space
between them, lead to a change of density of one of the particles. The new version applies to
solving the one-dimensional and two-dimensional quasi-linear transport equation problem.
Visualization is used to monitor the numerical solution, showing that the shock velocity is
calculated correctly, and the shock itself is smeared on one particle.
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1 Introduction

The main feature of gas dynamics is the appearance of discontinuities, more precisely,
strong gradients. The quality of computational methods is assessed primarily by their ability
to convey this behavior of a solution as adequately as possible. In our opinion, the discontin-
uous particle method [1—3] allows one to cope with these difficulties better than alternative,
traditionally more commonly used difference and finite element methods. This is achieved
because the particle method is based on the Lagrange approach, and this, in turn, provides
automatic mesh generation. In addition, particle methods have a constructive inclination to
parallelization, economical from the point of view of multidimensionality, ideologically or-
ganic to hierarchical transitions between micro-macro models of the considered phenomena.
It is worth noting that the problems of evaluating the accuracy of numerical methods on dis-
continuities currently are very relevant [4, 5].

The Burgers equation [6, 7], viscous and inviscid, is the simplest model, which shows the
key feature for the whole gas dynamics: the existence of zones with strong gradients of the so-
lution. Having correctly numerically simulated such zones, one can expect to build effective
computational methods, not only and not so much for macro-models, but also for meso - lev-
els of the hierarchy in the representation of the Kolmogorov — Fokker - Planck equations [1,
8,9].

Using the terminology of Hockney and Eastwood [10], we divide the whole set of particle
methods into 3 subclasses: particle-grid (PM) methods, particle-particle method (PP) and
hybrid particle-particle - particle-grid methods (PPPM or P3M). In this classification, the dis-
continuous particle method can be classified as a particle-particle method. The smoothed
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particle hydrodynamics method and its numerous modifications [11] or the material point
method [12] belong to the same subclass. The particle method is used to solve problems in
plasma physics and gas dynamics [10, 13, 14].

2 The basis of Discontinuous particle method

Let us assume there be N material points located at the initial time in coordinates x{ and
moving with velocities v;(x,t) (i = 1, ..., N). This verbal formulation corresponds to the Cau-
chy problem:

dx, (1)
T_Vi (Xi (t)’t)’ (1)
x.(0)=x’, i=1...,N.

This problem is a micromodel of the transport process. Let us show that one can pass
from Eq. (1) to a macromodel of the linear transport process.
We determine the distribution density u(x, t):
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The article [2] shows the transition from (1) and (2) to the generalized transport equa-

tion:
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and then to the transport equation in differential form:
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That is, if the coordinates of points change according to the system of equations (1), then
the density u(x, t) is a generalized solution of the Cauchy problem for the transport equation
(4). Instead of equation (4) we solve the system of equations (1). We can say that using the
representation of the desired function as a set of §-functions. What follows is an approxima-
tion of the &-functions by classical functions, with which the calculations at each time step are
performed.

Now write down another ODE system:
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Making a transition from (5) similar to that for system (1), we obtain a one-dimensional
quasi-linear transport equation:
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Let's write down yet another ODE system:
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Similarly, it leads to a two-dimensional quasi-linear transport equation:
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In this section, we obtain the basic equations to which our method will later be applied.




3 Particle method using shapeless particles

Let us describe the discontinuous particle method for one-dimensional quasi-linear
transport equation. Let's introduce the following notations: x¥ is the coordinate of center of i-
th particle at k-th moment of time, v¥ is the velocity of particle, h¥ is the height (density) of
particle, S; is the area (mass) of particle. In previous works [1-3, 15] we also introduced w.
This was the width of a particle. But now we consider particles shapeless, and we will not use
this concept. For better perception, all these values are marked in Figure 1.
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Figure 1: The main parameters used by the discontinuous particle method.

Let us assume that S¥ is the area of the trapezium, whose bases are the heights of i-1 and i
particles and whose sides are the distances between the particles, is constant.
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Let the centers of the particles satisfy the ODE system (5). We solve the differential part
of the system numerically using the explicit Euler scheme:

k+1 k uf .
x; T = X; +’L’71,l=1,...,N.
Since the equation is nonlinear, the particles move at different speeds, as a result of

which the area of the trapezoid between the particles can either increase or decrease. Taking
advantage of the fact that the area of the trapezoid must remain constant, we write:
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Let's show this visually in Figure 2:
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Figure 2: Visualizing the condition of constant trapezoidal area

However, we should keep in mind that by changing the height of a particle to preserve the
area of one trapezium we have implicitly increased the area of the neighboring trapezium. To
avoid the effect of such an implicit increase, we introduce an additional restriction: if i-1-th
particle is higher than i-th, the area of the trapezium must decrease. And if it increases, the
particles should not interact. If i-1-th particle is lower than i-th, the area of the trapezium
must increase. And if the area decreases, the particles also do not interact. We can rewrite the
condition of interaction of particles as follows:
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Next, we proceed to a description of the algorithm in the two-dimensional case. Using the
aiming parameter from [3], we find a pair of interacting particles. As shown in Figure 3, we
construct a trapezoid and pass from the solution of the two-dimensional problem to the one-
dimensional one, which has already been described earlier.
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Figure 3: Converting two-dimensional problem to a one-dimensional



It is worth noting that in the two-dimensional case the comparison with the trapezoidal
area in real time is a certain difficulty. One can either store all data from the first time step
and calculate old areas each time, or calculate all possible pairs of areas in advance, store
them in a two-dimensional array, and then retrieve them as needed. Detailed comparative
calculations have not been carried out, but it can be assumed that for a large number of parti-
cles with a small number of calculation time steps, the first option is advantageous. In the op-
posite case, it is preferable to use the second option.

This section shows the essence of the discontinuous particle method algorithm without
explicitly using the particle form. This is how the initialization of variables and their subse-
quent changes are carried out in the program.

4 Numerical Examples

First, we solve the Cauchy problem for the one-dimensional quasi-linear transport equa-
tion (5) with initial conditions:
2, X<2.1,

Ho)= {0.5, X>2.1. ©)

There is an exact solution for such an initial condition:

Ut = 2, X<2.1+1.25t,
7105, x>2.1+1.25t.
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Figure 4: Solution of the one-dimensional quasi-linear transport equation
by the particle method.

Figure 4 shows animated visualization of the numerical solution of equation (5) with ini-
tial conditions (9). The red line shows the exact solution. It can be seen that the shock velocity
is calculated correctly, the shock is smeared on one particle. After the high particle with high-
er velocity "collides" with the low particle with lower velocity, the low particle grows to the
height of the high particle. Thus, their speeds are compared, the low particle stops growing.
In its turn it “collides” with the next particle.

Then we solve the Cauchy problem for the one-dimensional quasi-linear transport equa-
tion (5) with initial conditions:

0.5 x<£2.1,

U ¥) = {2, x>2.1. (10)



There is also an exact solution for such an initial condition:

0.5, x<1.3+0.5t,

u(x,t) = X_Tl‘o’ 1.3+ 05t < x<1.3+2.0t,

2.0, x>1.3+2.0t.
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Figure 5: Solution of the one-dimensional quasi-linear transport equation
by the particle method.

Figure 5 shows animated visualization of the numerical solution of equation (5) with ini-
tial conditions (10). The red line shows the exact solution. It can be seen that the solution in
the form of rarefaction wave is calculated less accurately.

Then we numerically solve the Cauchy problem for the two-dimensional quasilinear
transport equation (7) with initial conditions:

6, x<1y<],
4, otherwise.
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Figure 6: Motion animation of the numerical solution of the two-dimensional Cauchy
problem by the particle method.



The discontinuity propagation in the two-dimensional problem is represented in the form
of animation (Fig. 6). For ease of perception, the particles in Figure 6 are depicted as circles.
It should be understood that the shape of the particles is not used anywhere in the algorithm
itself. The exact solution is indicated as a thick black line. You can see in Figure 6 that parti-
cles with higher velocity collide with particles with lower velocity. Those taper, and a one-
particle wide gap is formed. This shows the low approximation viscosity of our method. The
particles then continue to collide with each other, so that the gap moves at the velocity corre-
sponding to the analytical solution. A visual representation of the moving process of the
shock in the computational domain allows us to evaluate the properties of the used numerical
method.

5 Conclusions

Thus, we have demonstrated the possibility of a new version of the discontinuous particle
method that allows us to numerically simulate a system of two-dimensional quasi-linear
transport equations with high accuracy, which is especially pronounced in examples with dis-
continuous solutions. The visualization of the solution allows us to see the advantages and
disadvantages of the method more clearly.
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